[前へ戻る]
   

 授業科目
 Course Title
計量経済学
Econometrics 
 担当者
 Instructor
講師   大谷 碧  前学期 水曜日3時限/水曜日4時限
 単 位
 Credit
2

関連するディプロマポリシー Related Diploma Policy
自立した良識ある市民としての判断力と実践力/Judgment and practical ability as an independent citizen of sound sense
時代の課題と社会の要請に応えた専門的知識と技能/Expert knowledge and skills to address the issues of the age and the demands of society
 
到達目標
本講義は、後期の計量経済学IIにおいて学ぶデータ解析手法の前準備を行う科目である。具体的には、数理統計学の基礎事項(確率・統計)を学ぶ。講義の後半には、数式を使った表現に慣れ、分布の特性量を推定する方法や仮説検定の方法を学ぶ。これらの基礎的な統計学の知識を身に付け、後期の計量経済学IIで学ぶ推定量の特徴(最小二乗推定量や最尤推定量)の理解につなげる。具体的な到達目標を以下の4点として挙げる。
1.記述統計学における基礎事項を説明することができる。
2.推測統計学における基礎事項を説明することができる。
3.統計ソフトを用いたデータ分析ができる。
4.経済データから求めたい分布の特性量を計算することができる。

 
授業内容
本講義は、初めて経済統計学の授業を履修する人を想定し、将来に経済データの統計解析を行うための準備をするための基礎知識を教授する。後期の計量経済学IIで学ぶ推定量の特性を理解する準備と位置づける。文系科目であるが統計学の基礎を数式によって理解するため、学生には高校数学の知識を要求する。授業を進める中で何度か数学補講の時間をもち、復習を重ねることで無理なく数式の理解が進むように可能な限り配慮する。ただし、講義の課題提出は必須となる。

講義を通して、マイクロソフト社のエクセルを使用したデータ分析の実習も取り入れ、実データに触れる機会も設ける。ただし、エクセル講習を主目的とした講義ではないため、エクセル使用に自信の無いものは適宜、練習をしておくことが期待される。

 
授業計画
各回の授業内容は次のように予定しているが、時間の関係で若干前後する場合もある。
本講義を通して重点的に復習に時間を割くことが期待されている。復習の方法は主に以下の3通り存在する。
1)授業時間中に例題を挙げるため、その例題を自ら手を動かして解くこと
2)授業時間中の範囲を網羅した課題を出すため、その課題を解き、自らの理解度合いを知って復習の量を調整すること
3)参考書としてあげた本に掲載があるような練習問題を解いておくこと

いずれの方法でも構わないが、復習を授業毎に3時間程度行う習慣を身につけること。復習を行わない場合には講義途中で理解ができなくなる場合がある。また授業時間内に、提出課題の内容に基づいたクイズを抜き打ちで行う。クイズの点数は評価の対象となる。

1.ガイダンス、講義の目標、授業の進め方
  記述的統計1:データの種類と整理方法、高校数学の復習
2.記述的統計2:データの整理(ヒストグラム、ローレンツ曲線、分布の特性値)
3.記述的統計3:中央値、平均、分散、標準偏差の理解と計算方法
4.記述的統計4:共分散と相関係数の理解と計算方法
5.確率の理解1(集合、事象、標本空間、確率、確率の公理)
6.確率の理解2(加法定理、条件付確率、独立性)
7.確率変数の導入(離散確率変数と連続確率変数、確率密度関数と累積分布関数)
8.代表的な連続確率変数(正規分布と中心極限定理)
9.標本と母集団
10.統計的推測1:推定量の望ましさ(不偏性、一致性、効率性と大数の法則)
11.統計的推測2:区間推定
12.統計的推測3:点推定
13.統計的推測4:仮説検定と検定統計量
14.因果推論

 
授業運営
すべて講義形式による。授業運営の詳細については初回授業時間中に改めて説明するが、授業時にはパワーポイントを使用する。授業開始時に、配布プリントとして渡す。復習時にレジュメを使用して、復習すること。

講義の復習については14回の講義中に複数回の課題を課す。課題の提出方法、評価方法については初回講義中に説明をする。講義内容の理解と反復練習の目的をもって、課題をこなし提出することが要求される。

 
評価方法
授業時間中に実施するクイズ、期末試験と課題提出によって決まる。その割合は、期末試験6割、課題提出2割、授業中のクイズ2割とする。提出された課題について、採点後に必要な部分については適宜解説を与える。授業中のクイズはその場で解答例を示す。

 
オフィスアワー
授業終了後での受付

 

参考書
大屋幸輔『コア・テキスト統計学』第2版[新世社]2011
久保川達也『現代数理統計学の基礎』[共立出版]2017

 
 
 
[前へ戻る]